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ABSTRACT 

 

PRITCHARD, EWAN GARETH DAVID. Torque Converter Interactions in a Parallel 

Post Transmission Hybrid Driveline. (Under the direction of Dr. Richard Gould and Dr. 

Richard R. Johnson). 

 

Based on the work of both NC State University and independent non-profit Advanced 

Energy, a group of 15 plug-in hybrid school buses were constructed to determine basic 

performance characteristics and improve upon the design. This project was a joint effort 

with the IC Bus division of Navistar and the many school districts participating in the 

program. The buses have been in operation for up to four years as of the writing of this 

paper. The performance of the buses is better than traditional buses in terms of fuel 

economy and emissions, but not as favorable as originally predicted in ADVISOR 

modeling. 

 

There are a variety of reasons for this discrepancy in the performance, some of which 

were addressed in subsequent design iterations of the buses, such as decreasing final 

drive ratios and adjusting the capture of regenerative energy. Some other discrepancies 

remain unexplained.  The basic design of the buses uses a parallel post transmission 

hybrid system.  This design has been proposed in a number of retrofit situations and 

therefore has application across a wide variety of platforms. The current work looks at 

the energy lost to drag in the torque converter by extending existing models to a more 

general case and adding models of the overrunning regime.  In this study, a majority of 

the emphasis is on creating an adequate model of the performance of a torque converter 
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in the negative torque state without the application of lookup tables, which require 

specific torque converter testing. 

 

An automatic transmission has a hydraulic torque converter with a complex flow that aids 

the vehicle by multiplying torque at low speed from the combustion engine and facilitates 

idling of the engine while the vehicle is not moving. From 1960 to 1990, the torque 

converter was studied and modeled in great detail, but in each case, no modeling was 

conducted in the overrunning regime, where the speed of the turbine exceeds the speed of 

the impeller. Throughout the late 1990s and 2000’s, several drivelines have been built 

which use a parallel post transmission hybrid system.  There is a high percentage of time 

where the electric motor is the prime mover of the vehicle and in this case, the speed of 

the motor will cause the torque converter to overrun. Vehicle computer models such as 

DOE’s ADVISOR and PSAT utilize lookup tables for this purpose. The modeling 

approach developed here allows the user to generate an accurate model for the torque, 

speed, flow and losses for the torque converter from two independent performance 

variables and the geometric parameters of the specific torque converter in question. 

 

The torque converter model is compared in DOE ADVISOR 2002 with a similar torque 

converter model which uses a lookup table.  The performance results for the positive 

torque state show strong correlation with the results of the lookup table version in both a 

macro (drive cycle) scale as well as in specific performance results against real world 

data and short duration events; however, the model shows that the overall energy losses 
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of the converter can be 19 times greater than the traditional lookup table predicts. This is 

an important new finding that helps explain the losses in the torque converter when the 

vehicle is being driven by an electric motor downstream of the torque converter.  
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1. Introduction 

 

The current generation of plug-in hybrid electric school buses achieves significant economic 

advantages though a simple approach to integration.  The current system utilizes an 80 kW post 

transmission parallel hybrid electric system designed by Enova Corporation.  This system is 

coupled with a traditional school bus from Navistar.  While the existing buses do provide 

certified fuel economy gains, these gains are not as significant as originally anticipated.  This 

paper investigates the significant interplay between the electric motor and the transmission and 

engine that contributes to losses in the overall system efficiency.  The primary targets for these 

losses are in the torque converter of the transmission and engine braking.  These losses are 

opportunities for significant improvement in the driveline efficiency and can provide insight into 

some of the benefits of providing engine off operation in future generations of buses.   

  

Figure 1-1, Post Transmission Hybrid Driveline 
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The plug-in hybrid electric school buses have been in operation for nearly four years and while 

all buses show some fuel economy improvements, these results are highly mixed.  Increases in 

fuel economy as seen in day to day operation of the buses range between five and 50 percent 

improvement.  This improvement is most specifically based on the distance travelled between 

charging, indicating many buses return at the end of the day in charge sustaining mode.  

Significant improvements have been made in the programming of the buses, but electric 

consumption during charge depleting mode remains high, meaning the buses enter this sustaining 

mode faster than anticipated.  Vehicle modeling and experience with many all electric vehicles 

of a similar weight imply that the bus should show an electric consumption of approximately 1 

kWh per mile. While this is the published expected electric performance of these buses 

(Pritchard and Johnson ), actual data show this performance to be more on the order of 1.5 kWh 

per mile.  This research is an investigation into the possible causes for this unexpected 50% 

increase in energy consumption. 

 

1.1. Dynamometer Performance 

The model for the buses was created to help optimize the system and establish the benefits of 

engine-off operation and all-electric range validation of this model is accomplished by 

comparison with both chassis dynamometer data and real world reported usage. Real world 

usage has been collected on 15 of these buses located around the country.  Due to the varying 

environmental and route conditions of these buses, the performance of these fleets the data is 

useful for general performance, but less useful for the specific second by second performance 
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seen in this study. In addition to the real operation of the buses, several nationally recognized 

laboratories have conducted dynamometer testing of these buses as listed below: 

 

California Truck Testing Services (CaTTS): In February 2008, the 2006 Engine buses for Florida 

were not performing as expected. In response IC corporation and Enova conducted dynamometer 

testing at CaTTS to validate the performance. CaTTS data presented here are WVUSub cycle in 

depleting mode from this study. The WVUSub Cycle was determined in previous publications to 

be the most appropriate drive cycle for typical school bus operation (Pritchard and Johnson ). 

The total fuel economy over this route was on the order of 16 MPG although three different 

measurement methods were used and each provided a very different value. The original 

ADVISOR model predicted a lower fuel economy of 11.8 MPG (Pritchard and Johnson ).  These 

fuel consumption data do not include electricity consumption. Unfortunately only hybrid system 

data is available, roller energy data is not available at this time.  

 

In order to provide continuity with earlier analyses using the WVU-Sub Cycle (Pritchard and 

Johnson ), Testing Cycle at California Truck Testing Services or (CaTTS) was selected for many 

comparisons in this study.  shows that there is little difference between the lab driven and 

modeled cycles. 
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Figure 1-2, Experimental Versus Model Cycle Speeds 

Southwestern Research Institute (SwRI): In May 2008, IC Bus contracted SwRI to test for 

California emission certification of the buses to receive low emission hybrid tax credits. All data 

presented here are UDDS Heavy Vehicle cycle in charge depleting mode.  In this test, the total 

fuel economy reported by SwRI was approximately 10 MPG. Fortunately, the SWRI data 

includes tire force, emission and fuel flow data on a second by second basis. While these data 

could provide the basis for energy flow mapping, A series of inconsistencies in the data have 

caused concern for the use of this data without adequate knowledge of the systems taking the 

data and these data have not been used for this study. 

National Renewable Energy Laboratories (NREL): In August 2009, NCSU Worked with NREL 

to determine some of the testing criteria for these tests. As a result the hybrid system data and 

summarized dynamometer roll data were made available. These tests run were UDDS, OCTA, 

and a school bus cycle. The UDDS-HV Cycle reported 8.8 MPG 
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1.2. Efficiency Losses 

The Parallel Post-Transmission Hybrid Plug-In Driveline is shown in Figure 1-3. As mentioned 

in section 1.1, earlier modeling shows lower losses that real world data. The true nature of the 

vehicle losses are not completely known, but there are several key areas implicated as a 

beginning of investigation such as losses in the torque converter and engine braking creating a 

drag on the electric motor. 
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Figure 1-3, Parallel Post Transmission Driveline 

 

To evaluate overall performance and help determine the source of these losses, a series of data 

was acquired from the hybrid system while the vehicle was tested at California Truck Testing 

Services in California in addition to the basic dynamometer data.  The tests were run on a known 

drive cycle and on a vehicle with a 2006 emissions package (emissions prior to the incorporation 

of particulate traps). 
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1.3. Losses in the torque converter 

A torque converter is intended to act as a mediator between the engine and the automatic 

transmission.  Torque conversion relies on fluid pressure and centrifugal force to allow for slip 

between the engine rotational speed and the transmission rotational speed, the effect is much like 

a clutch on a conventional transmission.  In this case, however, torque from the electric motor is 

able to travel backwards through the transmission and into the torque converter.  This happens in 

all vehicles as the vehicle is slowing down, and allows for engine braking to occur. In the post  

 

Figure 1-4, CaTTS Hybrid System Data: Likely Torque Converter Slip Areas 

transmission hybrid, the torque may have been supplied by the electric motor to drive the vehicle 

but resulted in opposing torques and loss of energy to either heat in the torque converter or 
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engine. Losses in the torque converter will appear when the engine speed does not match the 

output speed at one of the exact gearing ratios set by the transmission. As is seen in Figure 1-4, 

there are two clear areas of concern for further investigation in the specific route file.  These 

areas of concern show up in both first and second gears.  If the vehicle were at a stop, the data 

points would occur at approximately 700 RPM for the engine, but 0 RPM for the motor.   

1.4. Engine braking causing a drag on the electric motor 

This power consumption is much more difficult to observe, and showed up in early data as a 

secondary curve on the motor performance maps.  The control system has been modified to 

correct this early problem, but this secondary curve still appears in the data. 

 

Figure 1-5, Electric Motor Performance Curve with Engine Braking Effects 
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The performance shown in Figure 1-5 collected from the CATTS Hybrid system data 

demonstrates that very little energy is being regenerated in the current system.  In addition to the 

relatively low level of regeneration, the engine retarder still show clearly as a secondary curve in 

the data.   

1.5. Evaluation 

It is apparent that each of these problems: torque converter losses, and engine braking could be 

causing some level of poor performance based on the evidence and through literature surveys. It 

is also clear that little is known about the performance of a torque converter in the overrunning 

mode. As a result, the remainder of this study will focus on this characteristic and the 

determination of a model adequate enough to predict the performance of such a system using 

only the base geometry of the torque converter. 
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2. Torque Converter 

 

The primary focus of this study is in the operation of the torque converter.  Torque converters are 

commonly used as a mediator between a combustion engine and an automatic transmission. This 

torque is transferred through a complex flow of transmission fluid located inside of the 

converter.  Initially when automatic transmissions were developed in the late 1930’s fluid 

couplings were used.  This coupling allowed torque to be transferred to the wheels, but also 

allowed for the vehicle to be stationary while the engine was running. 

2.1. Torque Coupling 

The torque coupling is a much simpler design and useful in understanding the operation of the 

torque converter. A torque coupling has two components which rotate with one imparting its 

torque on the other like two fans placed face to face. These components are each one half of a 

toroid as shown in Figure 2-1.  
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Figure 2-1, Torque Coupling: Cut Open (Left), Assembled (Right) 

 

Fluid flows in a complex pattern within the coupling; the entire unit spins upon its primary axis. 

The two halves of the torque coupling are typically called the impeller and the turbine. These 

names appropriately describe the role of each. The impeller is connected to the engine and acts 

as a pump driving fluid from the inner ring of the impeller to the outer ring. A guide ring serves 

to help ensure fluid flow around the area. This is done by both the centrifugal force of the fluid 

as the impeller spins as well as the use of specially engineered fins to guide the fluid outward, 

imparting as much of the energy from the impeller to the fluid as possible. 
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Figure 2-2, Impeller (left) and Turbine (right) 

  

As the fluid leaves the impeller, it enters the second half of the chamber, the turbine. Like the 

impeller, the turbine also has radial fins, but these are designed for the opposite purpose.  These 

fins are designed to impart the maximum amount of energy from the fluid into the turbine. 

Figure 2-2 shows the direction of rotation for a vehicle when it is moving forward.  The figure 

also shows a circle with an X which is the fluid entry point and a circle with a dot to show the 

fluid exit point for the normal regime where the engine is providing power to the wheels. Energy 

is transformed in the torque coupling in the form of torque and speed as shown in Figure 2-3. 
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Figure 2-3, Torque Converter Inputs and Outputs 

In a torque coupling, the torque leaving the coupling is always the same as the torque entering 

the coupling. This is often expressed as the torque ratio of one, where torque ratio (TR) is the 

ratio of the turbine torque (τt) to the impeller torque (τi) as shown in Equation 2.1. 

    
  

  
  (2.1)  

All power loss and inefficiency occurs in the torque coupling through a speed differential, where 

the level of slip between the two sides results in a similar expression called the speed ratio (SR) 

which is simply the ratio of turbine speed (t) to the impeller speed (i) All power loss and 

inefficiency occurs in the torque coupling through a speed differential, where the level of slip 
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between the two sides results in a similar expression called the speed ratio (SR) which is simply 

the ratio of turbine speed (t) to the impeller speed (i) 

    
  

  
  (2.2)  

In the case of a SR of less than one, the engine is driving the vehicle. In the case the SR is greater 

than one, the torque coupling is overrunning as is the case when coasting down hills or slowing 

down. A typical plot of the performance of a torque converter shows TR versus SR as found in 

Marks Handbook for Mechanical Engineers (Avallone et al.) and shown in Figure 2-4. It is worth 

noting that the SR on this plot does not exceed 1.0.  

 

Figure 2-4, Torque Ratio Versus Speed Ratio excerpt from Marks Handbook(Avallone et al. ) 

The speed ratio bears a lot of influence over the fluid dynamics within the torque coupling. 

Figure 2-5 shows how the fluid flows within a torque coupling. The primary flow is caused by 

the normal rotation of components as the fluid inside tries to keep pace with its donut shaped 

vessel.  The secondary flow is a much more complex flow that changes as a function of the speed 
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ratio. At speed ratios below one, the vortex flow is as shown in Figure 2-5, and considered 

positive in this study. As the speeds of both components become equal, the centrifugal forces of 

both sides cancel each other out, and the vortex flow goes to zero.  Finally, as the speed of the 

turbine begins to exceed that of the impeller, this flow reverses and flows in the opposite 

direction (negative value of Q in this study), imparting energy from the turbine to the impeller. 
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Figure 2-5, Torque Coupling Fluid Flow at SR<1 
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2.2. Torque Converter 

The torque converter was introduced into vehicles in the 1940s as a solution to issues posed by 

the torque coupling. A torque coupling has the problem that at low speed ratios, the output torque 

is very low.  This poor output torque at low speeds makes the vehicle sluggish on starting. The 

torque converter was introduced to overcome this problem. The addition of another component 

to the system, the stator, ensures that the fluid returning from the turbine to the impeller is 

redirected upward and forward, preparing it for the trip back through the impeller. The stator is 

attached to a one way clutch, ensuring that when fluid flows back from the turbine to the 

impeller, the stator is held fixed and used as a lever to force the fluid in a new direction. This 

allows the torque converter to have a multiplying effect on the incoming torque at low input 

speeds. 
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Figure 2-6, Torque Converter with Added Stator 

 

Figure 2-6 shows the torque converter including the stator which intercepts and redirects the 

returning flow between the turbine and the impeller.  Because of the one way clutch, the torque 

converter will behave like a torque coupling when the flow is reversed because the stator is free 

to rotate in this direction. As a result of this phenomenon, the torque converter has three distinct 

operating regimes as follows: 

 

 Regime 1: This is where the secondary flow rate (Q) is positive (flowing from impeller to 

turbine) and the torque converter is multiplying torque.  In this regime the stator is locked 
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due to the flow of the fluid around the converter, this locked stator enables torque 

multiplication. This is seen in speed ratios of 0 up to approximately 90% depending on 

the design of the specific converter (Avallone et al.). This point where the shift occurs is 

termed the “coupling” point. 

 Regime 2: Above the coupling point, the secondary flow rate (Q) is still positive, but the 

flow rate becomes small enough for the net resulting torque to be zero.  At the point the 

reaction on the stator becomes zero and further reductions actually lead the stator to turn. 

The speed ratios in this regime are above the coupling point but still below one. 

 Regime 3: In this regime, the torque is flowing from the turbine to the impeller, and the 

speed ratio is greater than one.  This results in a negative secondary flow rate (Q). 

 

These three operating regimes will be discussed in further detail later but each has very distinct 

behavior.  To better understand this behavior, we must first explore the various calculations on 

which these behaviors are based. 

2.3. Torque Coupling Flow Calculations 

The primary nature of the torque converter is based on the exchange of angular momentum 

between fluid elements and the motion of the component containing the fluid. Mathematically, 

this means that the fluid angular momentum flowing out of a component minus the amount 

flowing in is equal to the torque applied to that element.  A highly simplified case of this is seen 

in a torque coupling with flat blades.  
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  ̇        
    (2.3)  

The same is true for the turbine. 

  ̇        
    (2.4)  

Because the secondary angular momentum flow rate is the same exiting the impeller as it is 

entering the turbine, the resulting torque is the difference in these changes in angular momentum 

in the turbine. 

     ̇    ̇     (   
       

   ) (2.5)  

Following the same logic, the torque in the impeller is equal and opposite in the fluid coupling: 

         ̇    ̇     (   
       

   ) (2.6)  

To convert each of these torques to power we multiply by the speed. 

        (   
       

   ) (2.7)  

and 

        (   
       

   ) (2.8)  

Finally, the power equations can be used to determine the power losses of the entire converter 

           (   
       

   )      (   
       

   ) (2.9)  

or 

         (   
   

     
         

   
     

     ) (2.10)  

Because fluid losses are typically described in terms of pressure, Equation 2.10 can also be 

expressed as: 

          (   
   

     
         

   
     

     ) (2.11)  
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This relationship is important, because the losses in the coupling can also be expressed by the 

two sources of the losses, fluid friction (Δpf) and shock losses (Δpsl). Fluid friction is based on 

the square of the volume flow rate: 

     
 

 
    

  (2.12)  

Shock losses describe the effect of fluid flowing from one component to the next and the 

irreversibility that occurs as a result of this sudden change of direction.  In the torque coupling, 

there are two of these transitions and are therefore quantified as: 

      
 

 
    

 (     )
  

 

 
    

 (     )
  (2.13)  

Setting the fluid losses calculated in Equation 2.11 equal to the sum of the friction and shock 

losses provides a compatibility equation: 

 

 (   
   

     
         

   
     

     )

 
 

 
    

  
 

 
 (   

     
 )(     )

  

(2.14)  

or 

   (
   
     

 

  
)

  ⁄

(  
    

 )  ⁄  (2.15)  

This can then be substituted into the torque expressions 2.5 and 2.6 to establish the relationship 

between velocities and torques.   
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A true torque converter is more challenging to handle as a result of the stator and the angled fins.   

The addition of the stator also allows for torque multiplication by eliminating the flow of angular 

momentum term to be subtracted at the turbine as shown above because stator speed is equal to 

0. The resulting impeller torque is as follows:  

     ̇    ̇            (
         

   
 

         

   
)   (2.16)  

The first part of 2.16 is due to angular momentum change in the tangential velocity of the fluid 

increasing to the speed of the impeller at the radius of the impeller exit.  The second part comes 

from the change in the tangential component of the velocity resulting from blade angles. Both 

velocities are multiplied by the fluid flow rate and the fluid density. 
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3. Model Development 

 

In order to fully understand the performance of the torque converter in all modes of operation, it 

is necessary to formulate a mathematical model that can be used to predict torque and speed 

inputs, outputs and losses. In this section the guiding equations are developed and a series of 

methodologies are developed to easily determine the output based on specific inputs. 

3.1. Previous Torque Converter Work 

As innovation has waned in the advancement of torque converter design and modeling over the 

past 20 years, so has much of the research on the modeling and performance of them.  

Throughout the 1940’s and 1950’s a large amount of work was done on developing steady state 

models of the performance of torque converters at speed ratios below one. In 1966, Ishihara and 

Emori(Ishihara and Emori 501) developed a simple and effective model for transient 

characteristics. The relationships developed in the Ishihara and Emori(Ishihara and Emori 501) 

paper formed the basis of several more general models developed by Kotwicki(Kotwicki 1982) 

and Hrovat and Tobler(Hrovat 1985). Kotwicki(Kotwicki 1982) developed a clear set of steady 

state relations in his paper in 1982 which clearly describes the tie between the input torque and 

speed and the output torque and speed. In 1985 Hrovat and Tobler(Hrovat 1985) developed 

computer simulations and bond graphs to predict the performance of torque converters. Hrovat 

and Tobler(Hrovat 1985) developed a set of four first order nonlinear equations describing 

torque converter dynamics.  In their paper, they begin to develop some of the relations for torque 
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ratios greater than one in their appendix, but do not develop simplified relationships. Figure 3-1 

shows an excerpt from Kotwicki(Kotwicki 1982) along with the current thinking, limiting the 

relevant SR to one and below. 

 

Figure 3-1, TR versus SR Plot Excerpt from Kotwicki(Kotwicki 1982) 

 

Published results on torque converter modeling indicate that steady state models are appropriate 

for speeds exceeding 60 Hz (Kotwicki 1982) or more succinctly if the frequency of the 

disturbance is below one pulse per two impeller revolutions (Ishihara and Emori 501). As 

discussed in the previous section, the basis for these calculations is by developing the torque 

relationships through conservation of angular momentum. Once the torque values are found, 

these values can be used to develop a compatibility equation by equating the generated pressure 
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changes and the pressure losses. This equation can then be solved for Q to determine the flow 

rate in a given situation. These solutions must be found for each of the three modes described 

earlier as follows: 

 Regime 1: A speed ratio below the coupling point where the stator is held in place 

due to the one way clutch. 

 Regime 2: The speed ratio has reached the coupling point and is still below one. 

The torque reaction on the stator causes the stator to spin (freewheel) at this point 

but the flow rate is still positive. 

 Regime 3: A speed ratio exceeding one, the stator is now spinning (freewheeling) 

and the secondary flow rate is in a negative rotation causing the stator to spin 

freely and torque to be transferred from the turbine to the impeller. 

3.2. Torque Converter Mathematical Model 

The purpose of this study is to extend the current models of torque converters, and include the 

ability to reasonably predict the performance of a specific converter from a series of parameters 

in both the coupled and uncoupled state to include the overrunning regime.  The first two models 

are redeveloped here and using a similar methodology, the overrunning regime is also added. 

 

In the regimes we are focused on, two of the following variables are known, while the other two 

are not: ωi, ωt,τi, and τt. In addition to the desired variables, another variable, Q is important for 

use here. The evaluation of these relations comes from the development of torque as a function 

of the other variables. The determination of torque comes from the exchange of angular 
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momentum as shown in Chapter 2; however the addition of the stator and fins makes this 

derivation a little more challenging. There are now three components to calculate torque as well 

as three component transitions which create shock loss. The fins also add a tangential component 

to the primary flow, as the fins convert this flow to secondary flow  as shown in Figure 3-2.   

 

Figure 3-2, Effect of Fin Angle on Velocity 

An example of the modified calculation for the angular momentum leaving the impeller using the 

geometry described in Figure 3-3 is given in Equation 3.1  

  ̇        (
 

   
            ) (3.1)  

The resulting torque is the difference in the angular momentum flow entering the component and 

the flow leaving it. 

Fin 
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Recreated from Kotwicki(Kotwicki 
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3.2.1. Regime 1: Below the Coupling Point (ωs=0) 
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)) (3.3)  

      (   
       

   )     (
         

   
 

         

   
) (3.4)  

For speed ratios below one, the flow rate of the fluid is in the normal “positive” direction.  This 

means that the impeller forces the fluid to the outside of the unit, the turbine absorbs the energy 

in the fluid, and finally, the stator redirects the fluid to begin the operation again. Using the 

modified momentum equations in a similar methodology to that used in Chapter 2, torque 

equations 3.2 – 3.4 for each component of the system are developed. 

 

The negative sign on the turbine torque equation is due to the sign convention of outgoing torque 

being positive.  Due to the one way clutch in the stator, the stator will not spin until the flow rate 

slows to the point where the reaction force on the stator becomes zero, called coupling.  This 

mode is considered to be below the coupling point. 
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Figure 3-3, Positive Flow Dimensions 

 

Below the coupling point, the positive flow equations include a stator speed. Eliminating terms 

that contain this value yield the following.  
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Similar to the method described in Chapter 2, each of the torques is converted to a pressure 

change as shown below. 

Because the stator speed is zero, the resulting pressure change is also zero. Each of these 

pressures must now be equated to the determined pressure losses of flow and shock losses as 

shown below. 
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The resulting compatibility equation is therefore the following: 

or 

                                            (3.15)  

 

 

(3.16)  
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By gathering like terms and substituting the equal radii we can gather the different powers of Q 

to arrive at equation 3.17. For more details on this simplification see Appendix A.   
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(3.17)  

Making the following substitutions for the coefficients of Q results in a simpler equation 
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Equation 2.19 now becomes a simple quadratic formula: 

 

With the solution for Q of: 

   
    √  

       

   
 (3.22)  

 

This overall flow rate calculation correlates with the published torque converter models 

determined by Kotwicki(Kotwicki 1982) if radii and areas were assumed equal and Hrovat and 

Tobler(Hrovat 1985) if the equations were considered steady state. These equations provide a 

more general set of equations than those provided by Kotwicki (Kotwicki 1982)  

    
           (3.21)  
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3.2.2. Regime 2: Above the Coupling Point (τs=0,SR<1) 

When the calculated impeller torque is equal to or greater than the calculated turbine torque, the 

torque reaction on the stator must be either zero or less than zero.  Because of the one way clutch 

mounted on the stator, the stator will begin to turn as soon as the torque reaction is applied in this 

negative direction and the converter will begin to behave as a coupling with an extra element. 

The effect of this eliminates the stator multiplication effects in the torque equation. Above the 

coupling point, the stator torque is zero, but the rotational speed is no longer zero. Eliminating 

terms that contain this value yield the following.  
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Taking advantage of the stator condition provides a substitute for the stator speed 
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Which can then be placed back into the impeller torque 
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Similar to the method used in the below coupling regime, each of the torques is converted to a 

pressure change as shown below. 
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Both of these pressures must now be equated to the determined pressure losses of flow and shock 

losses as shown in Equations 3.30 – 3.33.  While the stator dropped out of the torque equations, 

the stator fluid transitions will still be a part of the calculation of the shock loss. 
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The resulting compatibility equation is found in Equation 3.34 
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Equation 3.34 can be manipulated using mathematical manipulation software such as Maple to 

determine the flow rate subscripts in this regime as shown in Appendix 1 to find the subscripts 

for Q as shown in Equation 3.35 
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(3.35)  

 

Extracting coefficients from the compatibility equation gives Equations 3.36-3.38 
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Equation 3.35 also becomes a simple quadratic formula: 

    
           (3.39)  

With the solution for Q of: 

   
    √  

       

   
 (3.40)  

 

The relationships between Q, ωi, ωt,τi, and τt are now determined for the conditions beyond the 

coupling point, the converter is characterized for all conditions up to a speed ratio of 1. Again 

these values also correlate exactly with those found by both Kotwicki(Kotwicki 1982) and 

Hrovat and Tobler(Hrovat 1985).  For speed ratios above 1, we must use a new set of conditions 

which are highlighted in the following section. 
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3.2.3. Regime 3: Overrunning Regime with Negative Flow (SR>1) 

In the case of the turbine overrunning the impeller, the fluid flow is reversed from the designed 

direction, or negative. Using a similar approach to the one used for the positive regime, but with 

new exit and entrance values a new set of equations can be established that are used to develop 

this relationship.  It is important to recognize that with a negative flow, or speed ratio greater 

than one, the converter will behave as a coupling. Behaving as a torque coupling also means that 

turbine torque will equal impeller torque or more succinctly have a torque ratio of one. As shown 

in Figure 3-4, the flow is reversed in this regime.   

Turbine Impeller

Stator

rte', rsx’ rse', rix’ 

Ase’,Aix’

Ate’,Asx’

Atx’,Aie’

rie', rtx’ 

ωt τt ωi τi

 

Figure 3-4, Negative Flow Geometry 
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As a result, values that were once entrance values become exit values and so forth. Not only do 

the angles on the blades change from entrance to exit, but the side of the blade the fluid first 

approaches changes also.  For this reason, the angles may not simply be inverted as was done in 

modeling by Hrovat and Tobler(Hrovat 1985). This is a unique contribution.  

 

Using a similar method to that used for the positive regimes but using the flow direction and 

variables shown in Figure 3-4, we arrive at the following relations for torque and flow: 
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Taking advantage of the stator torque being zero provides a substitute for the stator speed. 
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Equation 3.44 can then be placed back into the turbine torque and simplified to become Equation 

3.45 and 3.46. 
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or 
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) (3.46)  

 

Based on the known performance of torque converters above the coupling point, this validates 

the result, as a torque converter is known to behave as a torque coupling at speeds above the 

coupling point(Avallone et al. ). Note that the torque of the impeller is equal to the torque of the 

turbine. Similar to the method used in the prior regimes, each of the torques is converted to a 

pressure change as shown in Equations 3.47 and 3.48. 

 

Each of these pressures must now be equated to the determined pressure losses of flow and shock 

losses as shown below. 
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The resulting compatibility equation is therefore the following: 
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(3.53)  

 

Which can be manipulated using a mathematical package such as Maple in this regime. The 

Maple session is included in Appendix A, to find the subscripts for Q as shown in Equation 3.54.  

Note that all angles, radii and areas refer to the negative regimes although not noted. 
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Extracting coefficients from the compatibility equation gives: 

 

 

(3.54)  
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After substitution Equation 3.53 represents itself as a simple quadratic equation: 

    
           (3.58)  

With the solution for Q of: 
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    √  

       

   
 (3.59)  

At this point, all three regimes are developed as a system of three equations (Q, τi, and τt) and of 

five variables (Q, τi, τt, ωi, and ωt) and can be fully characterized, albeit with fairly complex 

relations. In the next section, we will develop relationships that are more useful in modeling. 
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3.3. Model Application 

Complex relationships of ωi, ωt, τi, and τt were developed in the previous section.  These results 

can now be recast to establish a means whereby knowing any two of the values, the others can be 

found and used in control algorithms or vehicle modeling. As discussed in the previous section, 

there are three distinct regimes of flow within the torque converter.  The three regimes are as 

follows: 

 Regime 1: This is where the secondary flow rate is normal (flowing from impeller to 

turbine) and the torque converter is multiplying torque.  In this regime the stator is locked 

due to the flow of the fluid around the converter, this locked stator enables torque 

multiplication. This is seen in speed ratios of 0 up to approximately 90% depending on 

the design of the specific converter. This point where the shift occurs is termed the 

“coupling” point. 

 Regime 2: Above the coupling point, the secondary flow rate is still positive, but the flow 

rate becomes small enough for the net resulting torque to be zero.  As the point the 

reaction on the stator becomes zero and further reductions actually lead the stator to turn. 

The speed ratios in this regime are above the coupling point but still below one. 

 Regime 3: In this regime, the torque is flowing from the turbine to the impeller, and the 

speed ratio is greater than one.  This results in a negative secondary flow rate (Q). 

 

A convenient way to understand the nature of these three modes is in a plot of the torque ratio as 

a function of speed ratio as shown in Figure 3-5. 
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While in the previous section the relationships between flow, torque and speed were developed, 

none of these relationships is of a form that can be readily used in modeling or control, since  

they are still deeply intertwined. In this specific example, we are seeking to determine the losses 

in the converter when a bus is driven on a particular cycle.   

 

Figure 3-5, Torque and Speed Ratio of the Three Distinct Modes 

 

The modeling used in this case is ADVISOR, which is a backwards facing model where the 

torque and speed of the turbine is known and the torque and speed of the impeller is needed.  

Another is the case of a forward facing model such as PSAT, where the torque and speed of the 
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engine is known, and the torque and speed of the turbine, or transmission is needed.  Finally 

there are the cases of low cost instrumentation and control where speed is known for both sides 

but the torque is not.  Table 3-1 shows the four distinct models possible. 

Table 3-1, Torque Converter Models 

Model Knowns Unknowns Possible Application 

1 τt, ωt Q, τi, ωi,  Backward Facing Model (ADVISOR) 

2 τi, ωi Q, τt, ωt Forward Facing Model (PSAT) 

3 ωi, ωt Q, τi, τt,  Low Cost Controls 

4 τi, τt Q, ωi, ωt Experimentation 

 

Based on each of the first three cases, a different set of steps can be used to determine the needed 

unknowns.  In the fourth case, the determination of speeds from torque, the singular nature of the 

torque ratio makes this evaluation impossible. 

 

Another relevant feature of Figure 3-5 is the torque ratio value at the intersection of the y-axis.  

This point is called the stall ratio.  Published data on the Allison TC-210(Allison Transmission 1) 

indicates that this value is 2.05. The calculated value of this ratio is 2.0546, as shown in trfc in 

Table 3-3, which provides a high validation of the geometry used in this study. 

  

This relationship of torque and speed is strongly dependent on the flow rate and direction of the 

fluid flowing in secondary rotation about the torque converter. From the previous section, we 

established clear relationships where this flow rate can be established for all speed ratios based 

entirely on the torque converter geometry. A detailed survey of the geometry and measurements 
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was conducted on the Allison TC-210 torque converter by taking measurements from a 

disassembled unit to determine the data presented in Error! Reference source not found.. 

Table 3-2, Allison Transmission TC-210 Torque Converter Geometry 

Variable Value Variable Value Variable Value 

αie 0º rie 0.0778 m Aie 0.019 m
2
 

αix 38º rix 0.1365 m Aix 0.022 m
2
 

αte 45º rte 0.1365 m Ate 0.022 m
2
 

αtx -45º rtx 0.0778 m Atx 0.019 m
2
 

αse 43º rse 0.0778 m Ase 0.019 m
2
 

αsx 75º rsx 0.0778 m Asx 0.019 m
2
 

 ie 38º  ie 0.1365 m  ie 0.022 m
2
 

 ix 0º  ix 0.0778 m  ix 0.019 m
2 

 te -45º  te 0.0778 m  te 0.019 m
2
 

 tx 45º  tx 0.1365 m  tx 0.022 m
2
 

 se 75º  se 0.0778 m  se 0.019 m
2
 

 sx 10º  sx 0.0778 m  sx 0.019 m
2
 

 

The intent of this work is to more fully understand the conditions that occur in the post 

transmission hybrid system in the plug-in hybrid electric school buses. In this case, the specific 

variables from the torque converter used in the Allison 2000 PTS transmission has the geometry 

listed in . In this study, all calculations of regime three refer to the prime values shown in the 

table because of the negative flow rate. 

 

Figure 3-6 shows the resulting flow rate as a function of speed ratio.  While the torque ratio 

versus speed ratio presents a singularity at all speed ratios above the coupling point, the flow rate 
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is distinct across all speed ratios. The three regimes show a smooth transition from positive to 

negative, although the calculations are undefined at the speed ratio of 1. 

 

Figure 3-6, Flow Rate versus Speed Ratio for Torque Converter 
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3.3.2. Known Turbine Conditions (backwards facing models) 

In modeling of a vehicle there are several different model approaches.  A backward facing model 

begins with a vehicle velocity trace and determines the needed torque and speed at the wheels, 

which in turn dictates the needed torque and speed at the axles and final drive. The model of a 

torque converter in this case will require that ωt, τt are known and we need to develop relations 

for ωi and τi. In this case, we can partially nondimensionalize the converter by establishing the 

performance of each mode as a function of SR and τt/ωi
2
 using the equations developed earlier.  

In this case each of these curves is a polynomial relationship of the characteristic form show in 

Equation 3.60 and individual polynomial curve fits can be determined for each mode where x is 

either 1, 2, or 3 depending on the mode. 

 
  

  
       

            (3.60)  

These resulting curves are shown in Figure 3-7 for the specific torque converter selected in this 

study. 
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Figure 3-7, Torque Converter Performance Curve Fit for Case of Known Turbine Conditions 

As shown in Figure 3-7, each of these curves has a well-fitting second order polynomial for the 

base curve with an R
2
 value exceeding 99.9%. By knowing these curves, an algorithm was 

developed to determine the impeller speed and torque from the following process. 

Table 3-3, Curve Fit Coefficients Developed for the Allison TC-210 Converter 

Regime a value b value c value R2 

1 k1a=-0.0068 k1b=-0.0048 k1c=0.0148 0.9998 

2 k2a=-0.1631 k2b=0.2715 k2c=-0.1070 0.9999 

3 k3a=-0.0064 k3b=-0.0054 k3c=0.0094 0.9996 

torque trfa=-0.5017 trfb=-0.6634 trfc=2.0546 0.9999 

τt/ωi
2  = -0.0061*SR2 - 0.004*SR + 0.0129 
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2  = -0.2405*SR2 + 0.4245*SR - 0.1833 

R² = 0.9996 
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R² = 0.9998 

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2 2.5

τ t
 /

ω
i2

 

Speed Ratio (ωt/ωi) 

Backward  Facing (Known ωt and τt) Curve Fitting  

Case 1: Below Coupling

Case 2: Above Coupling

Case 3: Overrunning

Case 1: Curve Fit

Case 2: Curve Fit

Case 3: Curve Fit



www.manaraa.com

 

 

51 

In addition to determining the coefficients each case for speed ratio, a curve fit must be 

determined for the torque ratio for Regime 1 as torque is multiplied in this case.  This curve fit is 

shown in Figure 3-8. 

 

Figure 3-8, Torque Ratio Curve Fitting 
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       √(     )

      (     
    )

    
 (3.61)  

4. Find the speed ratio (SR). If this speed ratio is greater than one, then skips steps 5, 6 and 

7 and proceed to 8. 

    
  

  
 (3.62)  

5. Use the speed ratio to determine the torque by using equation 3.63. 

    
  

                   
 (3.63)  

6. Determine the torque ratio (TR) 

    
  
  

 (3.64)  

7. If the torque ratio is greater than one, then this is the correct torque and speed and the 

calculation is complete, otherwise the converter is coupled and proceed to step 8. 

8. To determine the coupled speed, reevaluate the speed using the second regime curve fit. 

    
       √(     )      (     

    )

    
 (3.65)  

9. Set the       as the torque ratio is equal to one. 

10. If SR is less than 1, the calculation is complete. If the torque was negative, then also set 

      as the torque ratio is one.  Determine the impeller speed with equation 3.66 
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       √(     )

      (     
    )

    
 (3.66)  

The impeller conditions are now established for all turbine torques and speeds and this procedure 

can be implemented in a modeling tool such as ADVISOR as will be shown later in sections of 

this study. 

 

Figure 3-9, Known Turbine Conditions Model Results 

All models in this study are driven by speed ratio where the impeller speed is fixed and the 

turbine speed is varied to achieve a full spectrum of ratios.  Results on other impeller speeds are 

similar.  As shown in Figure 3-9 the calculated torques and speeds begin to deviate at the 

transitions from one regime to the next, but overall fit is well within expectations.  
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3.3.3. Known Impeller Conditions (forward facing models) 

 In the case of a forward facing model ωi, τi are known and we need to develop relations for 

turbine speed and torque. Like the other cases three distinct curve fits are needed to determine the 

speed performance.  In this case it is the function of the inverse of SR and τi/ωt
2
 as shown in 

Figure 3-10. 

 

Figure 3-10, Forward Facing Curve Fits 

The coefficients for the individual curve fits are presented in Table 3-4. 
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Table 3-4, Forward Facing Model Curve Fit Coefficients 

Regime a value b value c value R2 

1 k1a=0.0063 k1b=0.00008 k1c=-0.0022 0.9999 

2 k2a=-0.3735 k2b=0.8244 k2c=-0.45 0.9892 

3 k3a=0.0116 k3b=-0.0084 k3c=-0.0035 0.9974 

1(torque) trfa=-0.5017 trfb=-0.6634 trfc=2.0546 0.9846 

 

Much like the backward facing model, the following procedure can now be used to determine the 

turbine torque and speed. 

1. Determine the direction of the torque, if negative, then move to step 6 for the Regime 3 

approach. 

2. For data where the torque is positive, assume Regime 1 and use the k1 developed 

coefficients to determine the turbine speed according to 3.67 

 
   

       √(     )   (     
    )   

    
 

(3.67)  

3. Knowing the turbine speed, determine the speed ratio  

4. From the speed ratio, determine whether this is above the coupling point.   

5. If the converter is determined to be above the coupling point, use the Regime 2 curve fit 

to determine speed. 

 
   

       √(     )   (     
    )   

    
 

(3.68)  

6. For negative torque values, the speed can be calculated for Regime 3 by the following: 
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       √(     )   (     
    )   

    
 

(3.69)  

7. The Speed Ratio can now be determined for each value using Equation 3.62 

8. Using the determined SR, torque in each case can be determined using 3.70. 

    
  

                   
 (3.70)  

 

With turbine torque and speed determined for any case the results of this approach are beneficial.  

As shown in Figure 3-11, these results are quite accurate for all conditions except for speed 

ratios in Regime 1 shortly before the transition to Regime 2. 

  

Figure 3-11, Known Impeller Conditions Results 
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3.3.4. Known Speeds 

In the case of known speeds ωi and ωt are known and we need to develop relations for τi and τt. In 

this case, the speed ratio is also known. From this speed ratio, we can establish a series of curve 

fits for the flow rate Q. The flow rate curve fit and the already established torque can be used to 

determine the input and output torques.  

  

Figure 3-12, Flow Rate Curve Fit 

The determined coefficients from the curve fits are presented in Table 3-5. 
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Table 3-5, Flow Rate Curve Fit Coefficients 

Regime a value b value c value R2 

1 k1a=-0.0855 k1b=0.0106 k1c=0.124 0.9965 

2 k2a=-4.8074 k2b=8.6769 k2c=-3.8579 0.9994 

3 k3a=4.8074 k3b=8.6769 k3c=-3.8579 0.9976 

1 (torque) trfa=-0.5017 trfb=-0.6634 trfc=2.0546 0.9846 

 

  

Figure 3-13, Overall Flow Rate Curve Fit 

Figure 3-13 shows that the overall estimated values for all three regimes.  Note that the 

calculated curve fit flow rate has a high degree of accuracy across all Regimes.  
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The following procedure can now be used to determine the turbine and impeller speed. 

1. Create a curve fit for all three Regimes of Q and the Regime 1 torque ratio. In this case, 

the values shown in Table 3-5 are used. 

2. Determine the speed ratio and resulting regime. 

3. Determine the torque ratio, for Regimes 2 and 3, TR=1. For regime 1, determine the 

torque ratio from Equation 3.71 

          
               (3.71)  

4. Determine Q from equation 3.72, where x is the regime determined. 

        
              (3.72)  

5. Determine impeller torque 

        (   
   )     (

         

   
 

         

   
)                      

(regime 1) (3.73)  

        (   
       

   )     (
         

   
 

         

   
)        

(regime 2) (3.74)  

       (      
        

 )     (
           

    
 

           

    
)  

(regime 3) (3.75)  

6. Turbine torque can now be found using the torque ratio 

         (3.76)  

At this point we have determined the input and output torque of the converter based on the input 

and output speeds. Figure 3-14 shows the resulting calculation performance.  The curve fits are 

determined to have a high degree of accuracy as shown in this Figure. 
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Figure 3-14, Determined Torques from a Known Speed Model 
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3.5. Model Implementation in ADVISOR 

The primary intention of this work is to improve the accuracy of predictive models in the 

performance of plug-in hybrid school buses. As a result, these methods have been incorporated 

into ADVISOR to improve the accuracy of the system model. The original model created for the 

hybrid electric school buses was based on either pre-transmission hybrids, or manual post-

transmission hybrids.  A part of this work involved modifying the existing ADVISOR parallel 

driveline models to handle such a parallel post-transmission hybrid driveline with an automatic 

transmission and torque converter.  shows the modified Simulink block. In this model, the 

manual parallel post transmission driveline was merged with the automatic standard driveline to 

create an automatic post transmission hybrid driveline. 

 

As the changes to the driveline model also changed the model performance, two simultaneous 

models were run.  One model is used as a control model with the same Simulink block and the 

as-built ADVISOR torque converter model and another with the newly modeled torque 

converter. The conventional ADVISOR blocks use lookup tables for the torque converter 

performance data.  The lookup tables are populated from data tables provided by the user. The 

data studied here as a control unit is based on the standard data that is provided with ADVISOR.  

ADVISOR uses the torque converter data in two places; once for estimation of engine speed 

used for engine control and again for actual torque and speed fed from the transmission to the 

engine. Both blocksets, shown in Figure 3-16 and Figure 3-17, were modified in this study; the 

added torque converter model can be seen shaded.  The contents of this block are included in the 

appendix.
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Figure 3-15, Modified ADVISOR Simulink Block 

 

Figure 3-16, Engine Control Block in ADVISOR 
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Figure 3-17, Modified ADVISOR Torque Converter Block 
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A basic algorithm for the torque converter function is as follows: 

1. Set all of the k1, k2, k3 and trf constants for the curve fits 

2. Ensure that there are no negative turbine speeds 

3. If the torque and speed are very low (vehicle is idling) 

a. Set the speed ratio (SR) to very low  

b. The torque ratio (TR) to maximum. 

This eliminates divide by zero errors in the code later. 

4. If τt is greater than 0 

a. Assume it is in regime 1  

b. calculate impeller speed using the k1 equation 

c. Determine SR by dividing ωt / ωi 

d. Determine TR from  the TRF curve fit 

e. Calculate τi from TR and τt 

f. If τt is less that τi, then this is a coupled converter: use regime 2 

i. Use the k2 equation to determine ωi 

ii. Set τi = τt 

5. Otherwise τt is less than zero 

a. Calculate ωi from the k3 equation 

b. Set τi = τt  

6. Set the SR=ωt/ωi  

7. Set the TR=τt/ τi 

8. Return SR and TR 
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Once the subroutine was written, the sub-block was inserted into the existing ADVISOR blocks 

which previously determined SR and TR. The ADVISOR code does not run if either of these 

values is zero. As a result, the code has a series of checks to ensure these values are never 

exactly zero. The ADVISOR models were used to compare the two torque converter models, 

lookup table versus the calculations developed here. The models were also compared with the 

real world hybrid system performance from dynamometer testing.  The results from these 

comparisons are shown in later sections of this report. 
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4. Results  

 

Using conservation of angular momentum and equating the pressure loss due to shock and flow 

losses to the pressure changes due to input and output torque, a set of equations is developed for 

each of the three distinct regimes. The final mathematical models are presented in section 3 in 

further detail.  These models are based on similar modeling conducted by Hrovat and 

Tobler(Hrovat 1985), Kotwicki(Kotwicki 1982), and Ishihara and Emori(Ishihara and Emori 

501).  All of these studies present similar results, but with each there is a specific focus on a 

particular dynamic.   

 

In the case presented here, a steady state model is sought which matches DOE’s ADVISOR 

modeling package approach. Hrovat and Tobler(Hrovat 1985) present the beginnings of a 

negative flow regime, but this case includes transient and partial derivative terms.  Hrovat and 

Tobler(Hrovat 1985) also make a series of geometric assumptions that are not sustained in the 

negative regime, namely the reverse flow angles being assumed to be the inverse of the positive 

flow angles. As was described in Section 3, the fluid approaches the back side of the blades, 

which are not symmetric and therefore this assumption is not valid. Kotwicki(Kotwicki 1982) 

presents an extension of Ishihara and Emori’s(Ishihara and Emori 501) steady state base models.  

In this case the results match the Kotwicki(Kotwicki 1982) results for the regimes determined, 

regimes 1 and 2 assuming equal flow areas and radii are identical as assumed in their paper. In 

addition of the matching results, these data match similar published performance for positive 
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flow (Avallone et al. ) (Stone and Ball 594) (Wikipedia contributors ). Additionally, the 

published information that the torque ratio of a coupled torque converter is one provides further 

confirmation that the torque calculations are valid.  This is due to the nature of the stator 

performance variables to drop out of the equation leaving only the impeller and stator torques 

remaining. 

 

The mathematical relations that were developed were then used to develop effective 

methodologies for the various cases where one may need to determine particular outputs given 

particular inputs. The methods developed are: 

 Determining impeller conditions from known turbine conditions 

 Determining turbine conditions from known impeller conditions 

 Determining component torques based on component speeds 

The fourth possible scenario is based on known torques and determining component speeds.   

This scenario is indeterminate due to the singularity of torque ratio at all speed ratios in regimes 

two and three.  This scenario is also the least likely to be required, as torque is often much more 

difficult to determine in a system due to complexity and cost. The algorithms developed here are 

presented in detail in chapter 3 of this report. 

 

Validation of the individual methods was conducted by providing specific inputs although the 

outputs of each model were known.  The calculated outputs of the model were then compared 

with the actual outputs.  These results are shown in each individual regime during the model 

development.  In most cases these results present a high degree of accuracy, although in the case 
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of known impeller results (Figure 3-11), the error in torque near the coupling point begins to rise 

from around 2% at 0.74 SR and increases to less than 10% at 0.84 SR and to nearly 19% at 0.89 

SR.  At this point the model shifts to Regime 2 with an average error of 0.8%.  The average error 

for this entire dataset is 0.9%. Similarly the speed calculation has significant error  in regimes of 

Regime 1 at the same points SR=0.86-0.89 and also at low speed ratios SR=0.01-0.23  

 

In addition to validating the torque converter models themselves, the ADVISOR model was 

validated against both the ADVISOR Lookup model as well as the hybrid data logger from 

dynamometer testing. Figure 4-1 shows a speed trace of the three compared sources being run on 

the same drive cycle for comparison.  The models run in ADVISOR show similar results to one 

another. 

 

Figure 4-1, Test Drive Cycle Comparisons (WVUSub) 
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The overall torque converter performance is compared between the ADVISOR lookup table and 

the models created in this study as shown in Figure 4-2. This graph shows strong correlation 

between the ADVISOR lookup tables and the models created here. It is assumed that the lookup 

tables were created with a straight line fit from the input stall torque value of 2.05 and a standard 

geometry lookup table. The concave shape of the curve is also validated in Kotwicki(Kotwicki 

1982). 

 

Figure 4-2, Torque Converter Performance Comparison 
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showed 11.8 MPG, while the revised models showed 9.1 MPG for the lookup table model and 

8.8 MPG for the modeled converter.  These numbers are very close to the 8 to 9 miles per gallon 

being seen on average by school districts.  Additionally, late in 2009 NREL completed 

dynamometer testing of the buses (Gonder ) and concluded that they achieve 8.8 MPG when run 

on the City Suburban Heavy Vehicle Cycle – Heavy Duty (CSHVC-HD) cycle.  The CSHVC-

HD is often considered a slightly more aggressive cycle than the WVU-Sub cycle.    

 

While these data do not correlate well with the CaTTS dynamometer testing results of 13-16 

MPG, the results of the CaTTS are not supported by other outside testing sources such as 

NREL(Gonder ), Southwest Research Institute (SwRI), New York Power Authority (NYPA), 

and the many school districts driving the buses daily. Figures 4-3 and 4-4 show the results of the 

ADVISOR modeling for both the Lookup Table approach and the Modeled approach 

respectively.  
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Figure 4-3, Advisor Results using the Lookup Tables 
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Figure 4-4, ADVISOR Results Using Torque Converter Model 

 

By adding these characterizations to the ADVISOR models for hybrid vehicle performance, they 

present a clear argument indicating that significant losses can occur when an electric motor is 

applied downstream of the torque converter. 
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Figure 4-5 shows total energy losses resulting from two possible models of the torque converter.  

The model developed here is of two identical post transmission hybrid buses both driven on the 

West Virginia Suburban Cycle.  

 

 

Figure 4-5, Cumulative Energy Losses from ADVISOR Vehicle Modeling 
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the lookup model case. The major losses in this case are occurring in specific bursts which line 

up with major acceleration events. A closer view of one of these bursts is shown in Figure 4.6.   

 

Figure 4-6, Torque Converter Energy Loss Burst 

These bursts are occurring at times when the speed of the torque converter output is exceeding 

that of the engine or overrunning.  It should be noted that the speed of the motor is also modified 

by the gear ratio which does not show on the chart. 
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5. Conclusions 

 

This study was originated to determine the cause of the disparity between real world vehicle 

performance and ADVISOR modeling of plug-in post transmission hybrid school bus 

performance. Exhaustive searched showed that existing models do not appropriately account for 

the energy lost in the overrunning case of a torque converter.  This case is more likely to occur in 

a parallel post transmission hybrid, and more importantly, the energy use to create the condition 

is intended to be used to drive the wheels.  As a result, a methodology for performing steady-

state calculations to determine the performance of a hydraulic torque converter in the 

overrunning regime was developed.  Additionally, the more general case of different areas and 

radii within the converter in forward operating regimes was developed.  The results for all 

regimes were then extended to a series of cases where particular variables are known to 

determine the remaining variables for use in modeling or control.   Model derivations were based 

on sound methodology and applied in the new, or at least heretofore un-applied, negative flow 

condition. These models were validated against other published models in the positive flow 

regimes.  This paper presents the newly formed set of equations for Regime 3 or negative flow. 

 

The resulting models provided the basis to develop a set of systematic approaches to developing 

highly convenient models in three of the four possible known condition scenarios, as described 

below: 
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 Known Turbine Conditions – this applies to any backwards facing model such as 

ADVISOR or a system where the conditions are known downstream of the torque 

converter, such as wheel hub mounted torque sensors. The methodology developed here 

is highly accurate for all known turbine conditions. 

 Known Impeller Conditions – This application is based on forward facing models, where 

the engine torque and speed are known such as PSAT or a control algorithm where the 

engine has been well documented and manifold absolute pressure is used to determine 

engine torque. The method developed here is very accurate for most speeds (<2% error) 

with the exception of Regime 1 when approaching the coupling point. 

 Known Speeds – This case is more likely to exist in testing or controls where torque 

sensors are unavailable, but speeds are known. The method developed here is highly 

accurate. 

 Known Torques – Although this is a possible scenario, there are few examples where 

torque is known and speed is not. The results of this were not developed here as Regimes 

2 and 3 are indeterminate due to the singularity of torque ratio in these cases.  

 

The systematic approach was developed here for each of the three determinate cases with 

relatively high accuracy in all cases. 

 

The case of known turbine conditions was applied in a backwards facing modeling package 

(ADVISOR) to establish vehicle performance versus the traditional lookup table models. The 

resulting models predicted a significant increase in torque converter losses.  In the specific case 
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of the ADVISOR models of the plug-in post transmission hybrid school buses tested on the West 

Virginia Suburban Cycle, the newly formed model showed a 683 Watt-hour predicted loss from 

the torque converter compared with the lookup table method which predicted a 36 Watt-hour 

loss. This 19 fold increase in predicted torque converter losses serves to confirm the concern that 

traditional vehicle models are underreporting the losses created by negative flow interaction with 

the torque converter, which happens in retrofit post transmission vehicles.  
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Appendix 1: Torque and Flow Calculations in Maple 
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Appendix 2: Advisor Code For Known Turbine Conditions 

function [TR,SR] = fcn(tt,wt) 

  
%  Torque Converter performance model - knowing wt and tt 
%  Ewan Pritchard, Program Manager 
%  Advanced Transportation Energy Center 
%  10/1/2010 
%  egpritch@ncsu.edu 

  
idle=73.3038; 
eps2=0.000001; 

  
cp= 0.93;        
K1=[-0.0068,-0.0048,0.0148]; %polynomial curve fit for regime 1 - Converter 
K2=[-0.1631,0.2715,-0.1070]; %polynomial curve fit for regime 2 - Coupling 
K3=[-0.0064,-0.0054,0.0094]; %polynomial curve fit for regime 3 - Overrun 
TRF=[-0.5017,-0.6634,2.0546]; %polynomial curve fit for the TR in regime 1 

  
wt=abs(wt); % in the incredibly odd case of reverse - should not happen. 
%%%%%% This is for the no flow cases (no torque or velocity) %%%%%%%%% 
if (abs(tt)<eps2&&abs(wt)<eps2) 
    SR=eps2; 
    ti=tt/(TRF(1)*SR^2+TRF(2)*SR+TRF(3)); 

  
%%%%%% This is for the positive flow regime 1 %%%%%%%%% 
% Regime 1, Converter - Regime 2, Coupling              % 
% Flow will be positive if torque is positive       % 
% torque should never be positive while the speed   % 
% ratio is greater than one, this would be like     % 
% water flowing uphill.                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
elseif tt>=eps2 % Assuming Regime 1 first - initial calculation of wi 
    wi=(-K1(2)*wt+sqrt((K1(2)*wt)^2-4*K1(3)*(K1(1)*wt^2-tt)))/(2*K1(3)); 
    if wi<idle 
        wi=idle; % Because the engine cannot drop below idle speed 
    end 
    if abs(wt)<eps2 
        wt=eps2; 
    end 
    SR=wt/wi;    % SR assuming we are below the coupling point 
    ti=tt/(TRF(1)*SR^2+TRF(2)*SR+TRF(3)); %ti below the coupling point 
%%%%%% This is for the positive flow regime 2 %%%%%%%%% 
% Regime 2, Overrun                                   % 
% Calculated turbine torque in converter mode has   % 
% dropped below the impeller, stopping the stator   % 
% from holding torque and beginning to spin         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if SR>cp     % Regime 2 - Modifiying the speed and setting ti=tt 
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        if(((K2(2)*wt)^2-4*K2(3)*(K2(1)*wt^2-tt))>=0); 
            wi=(-K2(2)*wt+sqrt((K2(2)*wt)^2-4*K2(3)*(K2(1)*wt^2-

tt)))/(2*K2(3)); 
        else 
            wi=wt; 
        end 
        ti=tt; 
        SR=wt/wi; %recalculate SR for accuracy 
    end 

     
%%%%%% This is for the negative flow regimes %%%%%%%%%% 
% Regime 3, Overrun                                   % 
% Flow will be negative if torque is negative       % 
%                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
else   %tt negative -> regen mode - use curve fit 3 
    if((K3(2)*wt)^2-4*K3(3)*(K3(1)*wt^2-tt))<0 
        wi=idle; 
    else 
        wi=(-K3(2)*wt+sqrt((K3(2)*wt)^2-4*K3(3)*(K3(1)*wt^2-tt)))/(2*K3(3)); 
    end 
    ti=tt; 
    if abs(wt)<eps2 
        wt=eps2; 
    end 
    SR=wt/wi; 
end 
if abs(ti)<eps2 
   ti=eps2/2.05; 
end 
if abs(tt)<eps2 
   tt=eps2; 
end 
TR=tt/ti; 
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